3.387 \(\int \frac{d+e x^2}{\sqrt{a+b x^2-c x^4}} \, dx\)

Optimal. Leaf size=385 \[ \frac{\sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \left (e \left (b-\sqrt{4 a c+b^2}\right )+2 c d\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{4 a c+b^2}+b}}\right ),\frac{\sqrt{4 a c+b^2}+b}{b-\sqrt{4 a c+b^2}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}}-\frac{e \left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}} \]

[Out]

-((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*e*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (
2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt
[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4]) + (Sqrt[b + Sqrt[b^2 + 4*
a*c]]*(2*c*d + (b - Sqrt[b^2 + 4*a*c])*e)*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b +
Sqrt[b^2 + 4*a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])
/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.337288, antiderivative size = 385, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {1202, 524, 424, 419} \[ \frac{\sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \left (e \left (b-\sqrt{4 a c+b^2}\right )+2 c d\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}}-\frac{e \left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

-((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*e*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (
2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt
[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4]) + (Sqrt[b + Sqrt[b^2 + 4*
a*c]]*(2*c*d + (b - Sqrt[b^2 + 4*a*c])*e)*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b +
Sqrt[b^2 + 4*a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])
/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4])

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\sqrt{a+b x^2-c x^4}} \, dx &=\frac{\left (\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{d+e x^2}{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{\sqrt{a+b x^2-c x^4}}\\ &=-\frac{\left (\left (b-\sqrt{b^2+4 a c}\right ) \left (-\frac{2 c d}{b-\sqrt{b^2+4 a c}}-e\right ) \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{1}{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{2 c \sqrt{a+b x^2-c x^4}}-\frac{\left (\left (b-\sqrt{b^2+4 a c}\right ) e \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}}}{\sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{2 c \sqrt{a+b x^2-c x^4}}\\ &=-\frac{\left (b-\sqrt{b^2+4 a c}\right ) \sqrt{b+\sqrt{b^2+4 a c}} e \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}}+\frac{\sqrt{b+\sqrt{b^2+4 a c}} \left (2 c d+\left (b-\sqrt{b^2+4 a c}\right ) e\right ) \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} F\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{a+b x^2-c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.260553, size = 293, normalized size = 0.76 \[ -\frac{i \sqrt{\frac{2 c x^2}{\sqrt{4 a c+b^2}-b}+1} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \left (\left (e \left (b-\sqrt{4 a c+b^2}\right )+2 c d\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{2} x \sqrt{-\frac{c}{\sqrt{4 a c+b^2}+b}}\right ),\frac{\sqrt{4 a c+b^2}+b}{b-\sqrt{4 a c+b^2}}\right )+e \left (\sqrt{4 a c+b^2}-b\right ) E\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{-\frac{c}{b+\sqrt{b^2+4 a c}}} x\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )\right )}{2 \sqrt{2} c \sqrt{-\frac{c}{\sqrt{4 a c+b^2}+b}} \sqrt{a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

((-I/2)*Sqrt[1 + (2*c*x^2)/(-b + Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*((-b + Sqrt[b
^2 + 4*a*c])*e*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x], (b + Sqrt[b^2 + 4*a*c])/(b -
 Sqrt[b^2 + 4*a*c])] + (2*c*d + (b - Sqrt[b^2 + 4*a*c])*e)*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2
+ 4*a*c]))]*x], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])]))/(Sqrt[2]*c*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c])
)]*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 364, normalized size = 1. \begin{align*} -{\frac{ae\sqrt{2}}{2}\sqrt{4-2\,{\frac{ \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}\sqrt{4+2\,{\frac{ \left ( b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}} \left ({\it EllipticF} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4-2\,{\frac{b \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4-2\,{\frac{b \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}}}{\frac{1}{\sqrt{-c{x}^{4}+b{x}^{2}+a}}} \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) ^{-1}}+{\frac{d\sqrt{2}}{4}\sqrt{4-2\,{\frac{ \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}\sqrt{4+2\,{\frac{ \left ( b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}{\it EllipticF} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4-2\,{\frac{b \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }{ac}}}} \right ){\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}}}{\frac{1}{\sqrt{-c{x}^{4}+b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x)

[Out]

-1/2*e*a*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(4*a*c+b^2)
^(1/2))/a*x^2)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)/(b+(4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(4*a*c+b^2)^(1
/2))/a)^(1/2),1/2*(-4-2*b*(b+(4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)
^(1/2),1/2*(-4-2*b*(b+(4*a*c+b^2)^(1/2))/a/c)^(1/2)))+1/4*d*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+
(4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x
*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4-2*b*(b+(4*a*c+b^2)^(1/2))/a/c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )}}{c x^{4} - b x^{2} - a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 + b*x^2 + a)*(e*x^2 + d)/(c*x^4 - b*x^2 - a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x^{2}}{\sqrt{a + b x^{2} - c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(-c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x**2)/sqrt(a + b*x**2 - c*x**4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + b*x^2 + a), x)